top of page

Supramolecular Assembly-Induced Emission Enhancement


New strategies that can simultaneously detect and remove highly toxic environmental pollutants such as heavy metal ions are still in urgent need. Herein, through supramolecular host−guest interactions, a fluorescent supramolecular polymer has been facilely constructed from a newly designed [2]biphenyl-extended pillar[6]arene equipped with two thymine sites as arms (H) and a tetraphenylethylene (TPE)-bridged bis(quaternary ammonium) guest (G) with aggregation-induced emission (AIE) property. Interestingly, supramolecular assembly-induced emission enhancement (SAIEE) could be switched on upon addition of Hg2+ into the above-mentioned supramolecular polymer system to generate spherical-like supramolecular nanoparticles, due to the restriction of intramolecular rotation (RIR)-related AIE feature of G. Significantly, this supramolecular polymer with integrated modalities has been successfully used for real-time detection and removal of toxic heavy metal Hg2+ ions from water with quick response, high selectivity, and rapid adsorption rates, which could be efficiently regenerated and recycled without any loss via a simple treatment with Na2S. The newly developed supramolecular polymer system combines the inherent rigid and spacious cavity of novel extended-pillarene host with the AIE characteristics of TPE-based guest, suggesting a great potential in the treatment of heavy metal pollution and environmental sustainability.

Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.-R.; Wang, Y.; Zhang, D.; Yang, Y.-W.* Supramolecular Assembly-Induced Emission Enhancement for Efficient Mercury(II) Detection and Removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. DOI: 10.1021/jacs.9b01546.

bottom of page